DIAGNOSIS PENYAKIT DEMAM BERDARAH DENGUE MENGGUNAKAN VOTING FEATURE INTERVALS 5

Irman Hermadil ${ }^{n}$, Ayiz Kustijo ${ }^{n}$, Aristi Imka Apniasari ${ }^{D}$
I) Departemen Imu Komputer, FMIPA IPB

I. PENDAHULUAN

1.1. Latar Belakang

Penyakit Demam Berdarah Dengue (DBD) atau Dengue Hemorrhagic Fever ialah penyakit yang disebabkan oleh virus dengue yang ditularkan melalui gigitan nyamuk Aedes aegypti dan Aedes albopictus. Kedua jenis nyamuk ini terdapat hampir di seluruh pelosok Indonesia, kecuali di tempattempat dengan ketinggian lebih dari 1000 meter di atas permukaan air laut (Kristina et al, 2004).

Tingkat kematian akibat penyakit Demam Berdarah Dengue relatif masih tinggi. Sejak Januari sampai dengan 5 Maret tahun 2004 total kasus DBD di seluruh propinsi di Indonesia sudah mencapai 26.015, dengan jumlah kematian sebanyak 389 jiwa atau case fatality rate (CFR) sebesar $1,53 \%$ (Kristina et al, 2004).

Salah satu penyebab tingginya tingkat kematian tersebut adalah keterlambatan diagnosis (Sutaryo 2004 diacu dalam Syafii 2006). Semakin cepat diagnosis dapat dilakukan, semakin cepat pula pertolongan bisa diberikan sehingga dapat mengurangi angka kematian tersebut. Penyakit DBD juga sering salah didiagnosis dengan penyakit lain seperti flu atau tipus. Hal ini disebabkan karena infeksi virus dengue yang menyebabkan DBD bisa bersifat asimtomatik atau tidak

Jelas gejalanya (Kristina et al, 2004). Diagnosis penyakit DBD berdasarkan hasil pemeriksaan klinis antara lain dilakukan oleh Syafii (2006) dengan menggunakan

Adaptive Neuro Fuzzy Inference System (ANFIS). Akurasi model ANFIS yang dikembangkan Syafii (2006) mencapai $86,67 \%$. Akurasi ini belum maksimal karena data yang digunakan pada penelitian Syafii (2006) lebih banyak berupa data nominal. Sementara itu salah satu syarat agar model ANFIS bisa digunakan secara efektif adalah data yang digunakan harus memiliki selang atau grade. Oleh karena itu pada penelitian ini digunakan algoritma klasifikasi Voting Feature Intervals (VFI5), karena algoritma ini bisa menangani data ordinal maupun data nominal dengan baik. Seperti pada penelitian yang dilakukan oleh Iqbal (2007) dalam mengklasifikasi pasien Suspect Parvo dan Distemper. Dari 49 fitur yang digunakan, 47 fitur diantaranya berupa data nominal. Hasil akurasi yang diperoleh dalam pengklasifikasian pasien Suspect Parvo dan Distemper dengan menggunakan algoritma VFI5-adalah 90%. Demikian pula dengan penelitian yang telah dilakukan oleh HA Gövenir, G Demiröz dan N Ilter (1998) dalam memprediksi penyakit erythemato-squamous. Akurasi yang dihasilkan dengan menggunakan algoritma VFI5 mencapai $96,2 \%$. Dengan

Demikian terbukti bahwa algoritma VFI5 mampu memprediksi suatu penyakit dengan akurasi yang cukup tinggi.

1.2. Tujuan

Tujuan dari penelitian ini adalah untuk menerapkan algoritma klasifikasi VFI5 dalam diagnosa penyakit DBD. 1.3. Reang Lingkup

Pada penelitian ini dilakukan pembatasan masalah pada:
1 Data yang digunakan adalah data sekunder penyakit DBD pada penelitian Syafii (2006).
2 Bobot (weight) setiap feature pada data diasumsikan sama.

1.4. Manfaat

Penelitian ini diharapkan dapat membantu semua pihak dalam deteksi dini penyakit DBD menggunakan algoritma VFI5.

IL. METODE PENELITIAN

Penelitian ini melalui beberapa tahapan proses untuk mengetahui akurasi yang diperoleh algoritma VFIS dalam mendiagnosa penyakit Demam Berdarah Dengue (DBD). Tahapan-tahapan proses tersebut dapat dilihat pada Gambar 1 .

2.1. Data

Data yang digunakan dalam penelitian ini adalah data sekunder penyakit Demam Berdarah Dengue (DBD) pada penelitian Syaffi (2006). Sampel terdiri dari data pasien yang menderita penyakit DBD dan Demam Dengue (DD). Menurut International Classification of Deseases tenthrevision (ICD 10) penyakit DBD diberi kode A. 91 dan penyakit DD dengan kode A.90.

Gambar 1 Tahapan proses klasifikasi data

Persyaratan catatan medis yang dijadikan sampel adalah apabila di dalam catatan medis terdapat 4 (empat) catatan tentang kriteria klinis yaitu : demam (panas), bercak-bercak (petekia), tanda pendarahan spontan (mimisan, gusi berdarah, muntah berdarah dan tinja berwarna hitam) dan hasil uji tornikuet (Syafii 2006).

Jumlah penderita DBD 120 orang sedang jumlah penderita DD 111 orang. Berdasarkan daftar penderita ini maka dilakukan pencarian catatan medisnya. Dari pencarian terhadap 231 catatan medis, ditemukan 205 catatan medis. 26 catatan medis tidak ditemukan karena sedang digunakan dan juga karena kasusnya bukan rawat inap. Dari 205 catatan medis yang ditemukan, catatan medis yang memenuhi persyaratan hanya 64 , yang terdiri dari 32 kasus DBD dan 32 kasus DD (Syafii 2006).

2.2. SeleksiData

Pada penelitian ini akan dilakukan seleksi terhadap keseluruhan data baik sebelum maupun setelah validasi. Seleksi ini dilakukan untuk menentukan data mana yang digunakan sebagai data latih dan data uji.

2.3. Data Latih dan Data Uji

Dengan metode 3 -fold cross validation, seluruh data dibagi menjadi beberapa subset dengan ukuran yang hampir sama. Subset-subset tersebut akan digunakan sebagai data pelatihan dan data pengujian. Masing-masing data memuat informasi tentang data input berupa demam, bercak, pendarahan, hasil uji tornikuet dan data output berupa diagnosa (DBDatauDD).

2.4. Algoritma VFI5

Pada penelitian ini digunakan algoritma klasifikasi VFIS dengan bobot setiap feature diasumsikan sama. Tahapan ini terdiri dari dua proses yaitu pelatihan dan prediksi (klasifikasi) kelas instances baru.

2.5. Analisis

Pada tahapan ini dilakukan proses penghitungan akurasi. Akurasi diperoleh dengan perhitungan :

$$
\text { akurasi }=\frac{\Sigma \text { data uji benar diklasifiliasi }}{\Sigma \text { total data uji }}
$$

pengamatan terhadap hasil diagnosa penyakit DBD dengan menggunakan VF15. Hasil diagnosa diperoleh dari kelas dengan jumlah vote terbesar.

2.6. Spesifikasi Aplikasi

Aplikasi dirancang dan dibangun dengan hardware dan software sebagai berikut:

Hardware:

1 Prosesor Intel Pentium 4
2 Memori512MB
3 Harddisk 80 GB
4 Monitor $15^{\prime \prime}$
5 Alat input mouse dan keyboard

Software:

1. Sistem Operasi : Microsoft Windows XP
2. Microsoft Visual Basic 6.0

III. HASILDAN PEMBAHASAN

Sesuai dengan penelitian Syafii (2006) maka pada penelitian ini digunakan 4 gejala klinis objektif yaitu demam, bercak, pendarahan spontan dan hasil uji tornikuet untuk menetapkan diagnosa DBD secara klinis. Empat gejala klinis tersebut selanjutnya dijadikan sebagai fitur. Fitur-fitur yang ada dibedakan menjadi fitur linier dan fitur nominal. Suhu badan merupakan fitur linier sedangkan tiga gejala klinis lainnya merupakan fitur nominal.

Berdasarkan kesimpulan klinis yang telah ditentukan, selanjutnya dilakukan validasi data. Semua data yang nilainya dianggap tidak konsisten dengan kelasnya akan dihilangkan. Sebaran data sebelum dan setelah validasi dapat dilihat pada Tabel 1 .

Tabel 1 Sebaran data sebelum dan setelah validasi

Kasus	Sebelum validasi	Setelah validasi
DBD	32	23
DD	32	19
Jumlah	64	42

Pada penelitian ini dilakukan 4 thap pengujian. Tahap pertama adalah pengujian untuk data sebelum validasi, thhap kedua adalah pengujian untuk data setclah validasi tanpa persebaran, tahap ketiga adalah pengujian untuk data setelah validasi dengan persebaran dan tahap keempat adalah pengujian data dengan pembagian data latih dan data uji seperti pada penelitian Syafii (2006).

3.1. Pengujian Tahap Pertama

Pada tahap ini dilakukan pengujian untuk keseluruhan data sebelum validasi. Hasil pembagian data tahap pertama disajikan pada Tabel 2.

Tabel 2 Hasil pembagian data tahap pertama

Himponian bagian	DBD	DD
S_{1}	11 instances	10 instances
S_{2}	10 instances	11 instances
S_{5}	11 instances	11 instances
Total	32 instances	32 instances

Susunan data yang digunakan setagai data pelatihan dan data pengujian pada setiap iterasi disajikan pada Tabel3.

Tabel 3 Susunan data pelatihan dan data
pengujian tahap pertama

Iterasi	Pelatihan	Penguia
Petama	$\begin{gathered} \mathrm{S}_{2} \text { dan } \mathrm{S}_{3} \\ \text { (43 instances) } \end{gathered}$	S_{1} (21 instances)
Kedu	S_{1} dan S_{3} (43 instances)	$\begin{gathered} \mathrm{S}_{2} \\ \text { (21 instances) } \end{gathered}$
Ketiga	S_{1} dan S_{2} (42 instances)	$\begin{gathered} S_{3} \\ \text { (22 inslances) } \end{gathered}$

Dari keseluruhan data sebelum validasi yaitu sebanyak 64 instances, dinemukan 42 instances sebagai data yang
diklasifikasi benar. Rata-rata akurasi yang dihasilkan pada pengujian tahap pertama ini dapat dilihat pada Tabel 4.

Tabel 4 Akurasi dari setiap iterasi tahap pertama

Iterasi	Akurasi
Pertama	$66,67 \%$
Kedua	$66,67 \%$
Ketiga	$63,64 \%$
Rata-rata	$65,66 \%$

3.1.1. Iterasi Pertama

Pada iterasi pertama, himpunan bagian S_{2} dan S , digunakan sebagai data pelatihan sedangkan himpunan bagian S_{t} sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan 36 ${ }^{\circ} \mathrm{C}$ dan lebih dari $39^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu $36,4^{\circ} \mathrm{C}$ sampai $39^{\circ} \mathrm{C}$ merujuk pada kelas DBD. Tetapi dari hasil tersebut tidak dapat disimpulkan bahwa pada suhu rendah dan suhu tinggi penderita terserang DD dan pada suhu sedang penderita positif DBD. Hal ini disebabkan karena peran fitur-fitur lain dalam pengklasifikasian kelas sangat mempengaruhi. Antara fitur yang satu dengan fitur yang lain memiliki keterkaitan yang sangat erat.

Selain itu, kecenderungan yang muncul tersebut bisa dijelaskan dari segi tahapan perjalanan siklus DBD. Seperti yang sudah disebutkan sebelumnya bahwa DBD mengalami perjalanan empat tahap. Pada masa inkubasi hampir tidak ditemukan gejala. Kemudian pada masa akut mulai dijumpai beberapa gejala yang salah satunya adalah suhu badan naik. Adanya fenomena bahwa pada suhu tinggi penderita justru negatif DBD, bisa jadi disebabkan karena penderita memeriksakan dirinya ke dokter pada
memeriksakan dirinya ke dokter pada masa akut ini, yaitu saat gejala demam mulai muncul, sehingga kemungkinan terjadi kesalahan diagnosis sebagai penyakit flu atau tipus, bukan DBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai yang cukup signifikan yaitu 0,840 untuk kelas DBD dan 0,160 untuk kelas DD. Sementara itu kecenderungan penderita DD kurang terlihat dengan perbandingan nilai yang kurang signifikan, yaitu 0,556 untuk kelas DD dan 0,444 untuk kelas DBD.

Pada fitur pendarahan, kecenderungan yang muncul untuk menjadi ciri khas kelas DBD bisa dikatakan tidak tepat karena nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita terserang DD apabila terjadi pendarahan dengan perbandingan nilai 0,656 untuk kelas DD dan 0,344 untuk kelas DBD. Begitu juga sebaliknya untuk kecenderungan penderita positif DBD justru terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,512 untuk kelas DBD dan 0,488 untuk kelas DD.

Untuk fitur uji tomikuet, nilainilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 0,663 untuk kelas DBD dan 0,337 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tomikuetnya negatif dengan perbandingan nilai 0,690 untuk kelas DD dan 0,310 untuk kelas DBD.

Pengujian yang dilakukan pada
iterasi pertama sebagai klasifikasi pada data pengujian S_{1} menghasilkan akurasi sebesar $66,67 \%$. Dari keseluruhan jumlah data pengujian S , sebanyak 21 instances, ditemukan 14 instances sebagai data yang diklasifikasi benar.

3.1.2. Iterasi Kedua

Pada iterasi kedua, himpunan bagian S , dan S , digunakan sebagai data pelatihan sedangkan himpunan bagian S_{1} sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan kurang dari $36^{\circ} \mathrm{C}$ dan lebih dari $39^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu antara $36,4{ }^{\circ} \mathrm{C}$ sampai $39^{\circ} \mathrm{C}$ merujuk pada kelas DBD. Kecenderungan yang muncul untuk fitur demam sama seperti kecenderungan yang terlihat pada iterasi pertama, demikian pula dengan penyebab munculnya kecenderungan ini.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai yang cukup signifikan yaitu 0,827 untuk kelas DBD dan 0,173 untuk kelas DD. Sementara itu kecenderungan penderita DD kurang terlihat dengan perbandingan nilai yang kurang signifikan, yaitu 0,552 untuk kelas DD dan 0,448 untuk kelas DBD.

Seperti pada iterasi pertama, untuk fitur pendarahan kecenderungan yang muncul bisa dikatakan tidak tepat karena nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita terserang DD apabila terjadi pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,512 untuk kelas DD dan 0,488 untuk kelas DBD. Begitu juga sebaliknya untuk
lecenderungan penderita positif DBD jesten lerjadi bila tidak ada pendarahan Seyem perbandingan nilai 0,501 untuk leles DBD dan 0,499 untuk kelas DD.

Unel fitur uji tornikuet, nilai-nilai Sistribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tan ixetnya positif dengan perbandingan vilai 0,672 untuk kelas DBD dan 0,328 entek kelas DD. Sebaliknya, lecenderungan penderita DD terjadi bila hasil uji lomikuetrya negatif dengan perbendingan nilai pada selang adalah 8.677 untuk kelas DD dan 0,323 untuk kelas DBD.

Pengujian yang dilakukan pada iterasi lehaa sebagai klasifikasi pada data pengujian S_{2} menghasilkan akurasi sebesar $66,67 \%$.

3.13. Iterasi Ketiga

Fade itcrasi ketiga, himpunan bagian $\mathrm{S}_{\text {, dan }}$ himpunan bagian S_{2} digunakan sebagai data pelatihan sedangkan thapanan bagian S , sebagai data pengujan. Nilai distribusi pada fitur demam menunjukkan kecenderungan tahwa pada suhu badan kurang dari 36,5 ${ }^{C} \mathrm{C}$ den lebih dari $39^{\circ} \mathrm{C}$ merujuk pada kelas DO, sedangkan pade suhu $36,5^{\circ} \mathrm{C}$ sampai 39 τ mery)uk pada kelas DBD. Pada fitur bercak, nilai-nilai distribusi fitur tersebut pale selang tidak ada yang mencerminkan lecenderungan fitur ini untuk menjadi ciri ithas dari kelas DBD dan kelas DD. Nilai jang dihasilkan setiap interval baik pada lelas DBD maupunkelas DD adalah 0,5 .

Nibai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan hatwa penderita terserang DD apabila erpas pendarahan dengan perbandingan nile 0,6 untuk kelas DD dan 0,4 untuk
kelas DBD. Kecenderungan penderita positif DBD justru terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,514 untuk kelas DBD dan 0,486 untuk kelas DD.

Untuk fitur uji tornikuet, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tomikuetnya positif dengan perbandingan nilai 0,593 untuk kelas DBD dan 0,407 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai 0,667 untuk kelas DD dan 0,333 untuk kelas DBD.

Pengujian yang dilakukan pada iterasi ketiga sebagai klasifikasi pada data pengujian S, menghasilkan akurasi sebesar $63,64 \%$. Dari keseluruhan jumlah data pengujian S, sebanyak 22 instances, ditemukan 14 instances sebagai data yang diklasifikasi benar.

3.2. Pengujian Tahap Kedua

Pada tahap ini akan dilakukan pengujian terhadap data setelah validasi. Hasil pembagian data tahap kedua disajikan pada Tabel 5 .

Tabel 5. Hasil pembagian data tahap kedua

Himpunan bagian	DBD	DD
S_{1}	8 instances	6 instances
S_{2}	8 isstances	6 intences
S_{3}	7 instances	7 instances
Total	23 instances	19 instances

Susunan data yang digunakan sebagai data pelatihan dan data pengujian pada setiap iterasi disajikan pada Tabel 6.

Tabel 6 Susunan data pelatihan dan data pengujian tahap kedua

Iterasi	Pelatitan	Pengujian
Pertama	S_{2} dan S_{3} (28 instances)	$\begin{gathered} \mathrm{S}_{1} \\ \text { (14 instances) } \end{gathered}$
Kedua	S_{1} dan S_{5} (28 instances)	$\begin{gathered} S_{2} \\ \text { (14 instanoes) } \end{gathered}$
Ketiga	$\begin{gathered} \mathrm{S}_{1} \text { dan } \mathrm{S}_{2} \\ (28 \text { instances) } \end{gathered}$	$\begin{gathered} S_{3} \\ \text { (14 instances) } \end{gathered}$

Apabila pada pengujian tahap pertama kecenderungan yang dihasilkan oleh fitur pendarahan kurang tepat, maka pada pengujian tahap kedua ini, kecenderungan yang muncul pada fitur pendarahan bisa dijadikan kesimpulan klinis untuk menjadi ciri khas gejala DBD. Rata-rata akurasi yang dihasilkan pada pengujian tahap kedua ini dapat dilihat pada Tabel 7.

Tabel 7 Akurasi dari setiap iterasi tahap kedua

Iterasi	Akurasi
Pertama	100%
Kedua	$\mathbf{7 8 , 5 7 \%}$
Ketiga	100%
Rata-rata	$92,86 \%$

3.2.1. Iterasi Pertama

Pada iterasi pertama, himpunan bagian S_{2} dan S , digunakan sebagai data pelatihan sedangkan himpunan bagian S_{1} sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan lebih dari $39^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu antara $36,4^{\circ} \mathrm{C}$ sampai $39^{\circ} \mathrm{C}$ merujuk pada kelas DBD. Kecenderungan yang muncul untuk fitur demam pada tahap kedua iterasi pertama ini sama seperti kecenderungan yang terlihat pada pengujian tahap pertama, yaitu bahwa pada suhu rendah dan suhu tinggi
penderita terserang DD dan pada suhu sedang penderita positifDBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak ditemukan bercak di tubuhnya dengan perbandingan nilai yang kurang signifikan, yaitu 0,6 untuk kelas DD dan 0,4 untuk kelas DBD.

Nilai-nilai distribusi fitur pendarahan pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi pendarahan dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Begitu juga sebaliknya, kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,517 untuk kelas DD dan 0,483 untuk kelas DBD.

Untuk fitur uji tornikuet, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai0 untuk kelas DD dan 1 untuk kelas DBD.

Pengujian yang dilakukan pada iterasi pertama sebagai klasifikasi pada data pengujian $\mathbf{S}_{\mathbf{1}}$ menghasilkan akurasi sebesar 100%. Hal ini berarti prediksi kelas sebagai hasil klasifikasi yang dilakukan olch algoritma VFIS sama dengan kelas sebenarnya untuk seluruh data pengujian S_{r}.

322. Iterasi Kedua

Pada iterasi kedua, himpunan bagian $\mathrm{S}_{\text {, }}$ dan S , digunakan sebagai data pelatihan sedangkan himpunan bagian S_{2} sebagai deta pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan $36,2^{\circ} \mathrm{C}$ dan lebih dari $38,2{ }^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu antara $36,4{ }^{\circ} \mathrm{C}$ sampai $38,2^{\circ} \mathrm{C}$ merujuk padakelas DBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak ditemukan bercak di tubuhnya dengan perbandingan nilai yang kurang signifikan, yaitu 0,6 untuk kelas DD dan 0,4 untuk kelas DBD.

Nilai-nilai distribusi fitur pendarahan pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi pendarahan dengan perbandingan nilai I untuk kelas DBD dan 0 untuk kelas DD. Begitu juga sebaliknya untuk kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,517 untuk kelas DD dan 0,483 untuk kelas DBD.

Untuk fitur uji tomikuet, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai 0 untuk kelas DD dan 1 untuk kelas DBD.

Akurasi yang dihasilkan pada
pengujian tahap kedua iterasi kedua ini adalah sebesar $78,57 \%$. Tiga instances yang salah diklasifikasi oleh algoritma VFI5 termasuk ke dalam kelas DD, sedangkan kelas sebenarnya dari instances tersebut adalah kelas DBD. Normalisasi tiga instances pengujian ini disajikan pada Tabel 8.

Tabel 8 Normalisasi tiga instances pengujian

Fitur instances				DBD	DD
1	2	3	4		
39.0	0	0	1	0,47	0,53
38.5	0	0	1	0,47	0,53
38.7	0	0	1	0,47	0,53

Keterangan fitur:
$1=$ demam $3=$ pendarahan
$2=$ bercak $\quad 4$-uji tomikuet
Dari Tabel 9 dapat dilihat bahwa nilai normalisasi ketiga instances mendekati 0,5 . Tiga instances tersebut mempunyai peluang yang hampir sama untuk menjadi kelas DBD maupun kelas DD. Ternyata apabila tiga instances yang salah diklasifikasi berada pada satu data pengujian yaitu S_{η}, akurasi yang dihasilkan hanya mencapai $78,57 \%$.

3.2.3. Iterasi Ketiga

Pada iterasi ketiga, himpunan bagian S_{1} dan S_{2} digunakan sebagai data pelatihan sedangkan himpunan bagian S_{3} sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada sufiu badan $36,2^{\circ} \mathrm{C}$ dan lebih dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu $36,5^{\circ} \mathrm{C}$ sampai pada suhu badan kurang dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan
kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak ditemukan bercak di tubuhnya dengan perbandingan nilai yang kurang signifikan, yaitu 0,533 untuk kelas DD dan 0,467 untuk kelas DBD.

Nilai-nilai distribusi fitur pendarahan pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi pendarahan dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,533 untuk kelas DD dan 0,467 untuk kelas DBD.

Untuk fitur uji tornikuet, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai 0 untuk kelas DD dan 1 untuk kelas DBD.

Pengujian yang dilakukan pada iterasi ketiga sebagai klasifikasi pada data pengujian S , menghasilkan akurasi sebesar 100%. Hal ini berarti prediksi kelas sebagai hasil klasifikasi yang dilakukan oleh algoritma VFI5 sama dengan kelas sebenarnya untuk seluruh data pengujian S_{3}.

3.3. Pengujian Tahap Ketiga

Dari hasil pengujian tahap kedua, ditemukan 3 instances yang salah diklasifikasi dimana ketiga instances tersebut berada pada satu data pengujian yang sama. Pada tahap ini, ketiga
instances tersebut akan discbar pada 3 data pengujian yang berbeda, sehingga masing-masing data pengujian mengandung satu instances yang salah diklasifikasi.

Pembagian data keseluruhan setelah validasi dengan persebaran menghasilkan subset-subset yang masing-masing memiliki jumlah instances yang hampir sama. Hasil pembagian data tahap ketiga disajikan pada Tabel9.

Tabel9 Hasil pembagian data tahap ketiga

Himpunan bagian	DBD	DD
S_{1}	8 instances	6 instances
S_{2}	8 instances	6 instances
S_{3}	7 instances	7 instances
Total	23 instances	19 instances

Susunan data yang digunakan sebagai data pelatihan dan data pengujian pada setiap iterasi disajikan pada Tabel 10 .

Tabel 10 Susunan data pelatihan dan data pengujian tahap ketiga

Iterasi	Pelatihan	Pengujian
Pertama	S_{2} dan S_{3} (28 intances)	S_{1} (14 instances)
Kedua	S_{1} dan S_{3} $(28$ instances)	S_{2} (14 instances)
Ketiga	S_{1} dan S_{2} (28 instances)	S_{3} (14 instances)

Dari keseluruhan jumlah data setelah validasi yaitu sebanyak 42 instances, ditemukar 41 instances sebagai data yang diklasifikasi benar. Akurasi yang dihasilkan pada proses pengujian tahap ketiga disajiikan pada Tabel 11 .

Tabel II Akurasi dari setiap iterasi tahap ketiga

ferasi	Akurasi
Pertama	$92,86 \%$
Kedua	100%
Ketiga	100%
Rata-rata	$97,62 \%$

3.3.1. Iterasi Pertama

Pada iterasi ini, himpunan bagian S_{2} dan S , digunakan sebagai data pelatihan sedangkan himpunan bagian S, sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan lebih dari $38,7^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu antara $36,4{ }^{\circ} \mathrm{C}$ sampai $38,7^{\circ}{ }^{\circ} \mathrm{C}$ merujuk pada kelas DBD. Hasil ini hampir sama dengan kecenderungan yang dihasilkan pada proses pengujian sebelumnya, begitujuga dengan penyebab munculnya kecenderungan ini.

Pada fitur bercak, nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak ditemukan bercak dengan perbandingan nilai 0,625 untuk kelas DD dan 0,375 antuk DBD.

Untuk fitur pendarahan, kecenderungan yang muncul sama seperti kecenderungan yang dihasilkan pada pengujian tahap kedua. Nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi pendarahan dengan perbandingan nilai 1 tatuk kelas DBD dan 0 untuk kelas DD. Begitu juga sebaliknya untuk kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan

Perbandingan nilai yang kurang signifikan yaitu 0,517 untuk kelas DD dan 0,483 untuk kelas DBD.

Untuk fitur uji tornikuet, kecenderungan penderita positif DBD bila hasil uji tomikuetnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai 0 untuk kelas DD dan I untuk kelas DBD.

Pengujian yang dilakukan pada iterasi pertama sebagai klasifikasi pada data pengujian S_{1} menghasilkan akurasi sebesar $92,86 \%$. Dari keseluruhan jumlah data pengujian S_{1} sebanyak 14 instances, ditemukan 1 instances sebagai data yang diklasifikasi salah. Hasil pengujian instances tersebut disajikan pada Tabel 12.

Tabel 12 Hasil pengujian instances salah klasifikasi tahap ketiga

Fitur	Instances $(39 ; 0 ; 0 ; 1)$	
	DBD	DD
Demam	0	1
Bercak	0,375	0,625
Pendarahan	0,483	0,517
Uji tornikuet	1	0
Total vote	1,858	2,142

Dari Tabel 12 dapat dilihat bahwa total vote kelas DD lebih besar daripada total vote kelas DBD, sehingga instances yang salah diklasifikasi tersebut termasuk ke dalam kelas DD, sedangkan kelas sebenarnya adalah kelas DBD. Hal ini disebabkan karena nilai fitur demam instances tersebut merujuk pada kelas DD. Normalisasi instances pengujian tersebut disajikan pada Tabel 14.

Tabel 13 Normalisasi instances pengujian salah klasifikasi

Fitur instances				DBD	DD
1	2	3	4		
39.0	0	0	1	0,46	0,54

Keterangan fitur:
1=demam $3=$ pendarahan
$2=$ bercak $\quad 4=$ uji tomikuet

3.3.2. Iterasi Kedua

Pada iterasi kedua, himpunan bagian S , dan $S_{\text {}}$ digunakan sebagai data pelatihan sedangkan himpunan bagian S_{2} sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan kurang dari 36,5 ${ }^{\circ} \mathrm{C}, 39^{\circ} \mathrm{C}$ dan $39,7^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu antara $36,5^{\circ} \mathrm{C}$ sampai $39^{\circ} \mathrm{C}$ merujuk pada kelas DBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai I untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak diternukan bercak di tubuhnya dengan perbandingan nilai yang kurang signifikan yaitu 0,556 untuk kelas DD dan 0,444 untuk kelas DBD.

Pada fitur pendarahan, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi pendarahan dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Begitu juga sebaliknya kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,517 untuk kelas DD dan 0,483 untuk kelas DBD.

Untuk fitur uji tornikuet, nilai-nilai

Distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai 0 untuk kelas DD dan I untuk kelas DBD.

Pengujian yang dilakukan pada iterasi kedua sebagai klasifikasi pada data pengujian S_{2} menghasilkan akurasi sebesar 100%. Hal ini berarti prediksi kelas sebagai hasil klasifikasi yang dilakukan oleh algoritma VFI5 sama dengan kelas sebenarnya untuk seluruh data pengujian S_{2}.

3.3.3. Iterasi Ketiga

Pada iterasi ketiga, himpunan bagian $\mathrm{S}_{\text {, }}$ dan S_{2} digunakan sebagai data pelatihan sedangkan himpunan bagian S , sebagai data pengujian. Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan $36,2^{\circ} \mathrm{C}$ dan lebih dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu $36,4^{\circ} \mathrm{C}$ sampai pada suhu badan kurang dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak ditemukan bercak di tubuhnya dengan perbandingan nilai yang kurang signifikan yaitu 0,552 untuk kelas DD dan 0,448 untuk kelas DBD.

Pada fitur pendarahan, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi

Pendarahan dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Begitu juga sebaliknya kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,533 untuk kelas DD dan 0,467 untuk kelas DBD.

Untuk fitur uji tornikuet, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuctnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan perbandingan nilai 0 untuk kelas DD dan 1 untuk kelas DBD.

Pengujian yang dilakukan pada iterasi ketiga sebagai klasifikasi pada data pengujian S, menghasilkan akurasi sebesar 100%. Hal ini berarti prediksi kelas sebagai hasil klasifikasi yang dilakukan oleh algoritma VFIS sama dengan kelas sebenarnya untuk seluruh data pengujian S_{j}.

3.4. Pengujian Tahap Keempat

Pada tahap ini dilakukan pengujian terhadap data baik sebelum validasi maupun setelah validasi dengan pembagian data latih dan data uji seperti pada penelitian Syafii (2006). Susunan data yang digunakan sebagai data pelatihan dan data pengujian disajikan pada Tabel 14.

Tabel 14 Susunan data pelatihan dan data pengujian tahap keempat

Data	Sebelum validasi	Setelah validasi
Pelatihan	44 instances	27 instances
Pengujian	20 instances	15 instances
Jumlah	64 instances	42 instances

3.4.1. Sebelum validasi

Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan kurang dari $36,4^{\circ} \mathrm{C}$ dan lebih dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu $36,4^{\circ} \mathrm{C}$ sampai $39^{\circ} \mathrm{C}$ merujuk pada kelas DBD. Kecenderungan ini sama seperti kecenderungan yang terlihat pada pengujian data sebelumnya yaitu pada suhu rendah dan suhu tinggi penderita cenderung DD sedangkan pada suhu sedang penderita cenderung DBD, demikian pula dengan penyebab munculnya kecenderungan ini.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai yang kurang signifikan yaitu 0,6 untuk kelas DBD dan 0,4 untuk kelas DD . Demikian pula dengan kecenderungan penderita DD, perbandingan nilainya adalah 0,513 untuk kelas DD dan 0,487 untuk kelas DBD.

Nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita terserang DD apabila terjadi pendarahan dengan perbandingan nilai 0,6 untuk kelas DD dan 0,4 untuk kelas DBD. Begitu juga sebaliknya, kecenderungan penderita positif DBD justru terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,513 untuk kelas DBD dan 0,487 untuk kelas DD.

Untuk fitur uji tornikuet, nilai-nilai distribusi fitur tersebut pada selang mencerminkan keceĩderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 0,586 untuk kelas DBD dan 0,414 untuk kelas DD. Sebaliknya, kecenderungan penderita DD terjadi bila hasil uji tornikuetnya negatif dengan

Perbandingan nilai 0,667 untuk kelas DD dan 0,333 untuk kelas DBD.

Dari keseluruhan jumlah data pengujian sebanyak 20 instances, ditemukan 14 instances sebagai data yang diklasifikasi benar. Akurasi yang dihasilkan pada pengujian ini adalah 70%.

3.4.2. Setelah validasi

Nilai distribusi pada fitur demam menunjukkan kecenderungan bahwa pada suhu badan $36,2^{\circ} \mathrm{C}$ dan lebih dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DD, sedangkan pada suhu $36,4{ }^{\circ} \mathrm{C}$ sampai kurang dari $39{ }^{\circ} \mathrm{C}$ merujuk pada kelas DBD.

Pada fitur bercak, nilai-nilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila ditemukan adanya bercak dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, penderita cenderung DD bila tidak ditemukan bercak di tubuhnya dengan perbandingan nilai yang kurang signifikan yaitu 0,548 untuk kelas DD dan 0,452 untuk kelas DBD.

Nilai-nilai distribusi fitur pendarahan pada selang mencerminkan kecenderungan bahwa penderita positif DBD apabila terjadi pendarahan dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Begitu juga sebaliknya kecenderungan penderita DD terjadi bila tidak ada pendarahan dengan perbandingan nilai yang kurang signifikan yaitu 0,531 untuk kelas DD dan 0,469 untuk kelas DBD.

Untuk fitur uji tornikuet, nilainilai distribusi fitur tersebut pada selang mencerminkan kecenderungan bahwa penderita positif DBD bila hasil uji tornikuetnya positif dengan perbandingan nilai 1 untuk kelas DBD dan 0 untuk kelas DD. Sebaliknya, kecenderungan penderita
dengan perbandingan nilai 0 untuk kelas DD dan 1 untuk kelas DBD.

Akurasi yang dihasilkan dari pengujian data setelah validasi tahap keempat ini adalah 100%. Hal ini berarti prediksi kelas sebagai hasil klasifikasi yang dilakukan oleh algoritma VFI5 sama dengan kelas sebenarnya untuk seluruh data pengujian setelah validasi.

IV.KESIMPULANDANSARAN

4.1. Kesimpulan

Pada penelitian ini, algoritma klasifikasi VF15 dikembangkan dan diterapkan untuk mendiagnosis penyakit DBD. Akurasi yang dihasilkan lebih tinggi bila dibandingkan dengan penelitian yang telah dilakukan oleh Syafii (2006) dengan menggunakan model ANFIS. Akurasi yang diperoleh dengan model ANFIS adalah $\mathbf{8 6}, 67 \%$ sedangkan dengan VFI5 adalah 100%. Hal ini disebabkan data yang digunakan pada penelitian ini lebih cocok untuk VFI5 daripada untuk model ANFIS.

Rata-rata akurasi yang dihasilkan pada pengujian tahap pertama terhadap data sebelum validasi adalah $65,66 \%$. Pada pengujian tahap kedua untuk data setelah validasi tanpa persebaran ditemukan 3 instances yang kelas prediksinya tidak sesuai dengan kelas sebenarnya. Masing-masing instances tersebut memiliki peluang yang hampir sama untuk menjadi kelas DBD maupun kelas DD. Ratarata akurasi pada pengujian tahap kedua ini adalah $92,86 \%$. Selanjutnya pada pengujian tahap ketiga yang dilakukan pada data
setclah validasi, tiga instances yang salah diklasifikasi pada tahap kedua disebar peda tiga data pengujian yang berbeda. Hasilnya terdapat 1 instances yang kelas prediksinya tidak sesuai dengan kelas sebenarnya. Instances tersebut memiliki peluang yang hampir sama untuk setiap kelasnya. Rata-rata akurasi yang dihasilkan pada pengujian tahap ketiga ini mencapai $97,62 \%$. Pada pengujian tahap keempat dimana pembagian data latih dan data uji mengacu pada penelitian Syafii (2006), akurasi yang dihasilkan untuk data setelah validasi adalah 100%.

Nilai-nilai distribusi setiap fitur pada selang yang dihasilkan pada pengujian tahap kedua dan ketiga lebih jelas terlihat kecenderungannya untuk menjadi ciri khas gejala DBD bila dibandingkan dengan pengujian tahap pertama. Selanjutnya, bila pada pengujian tahap pertama kecenderungan yang dhasilkan oleh fitur pendarahan kurang lepat, maka pada pengujian tahap kedua, lecenderungan yang muncul pada fitur pendarahan bisa dijadikan kesimpulan tlinis untuk menjadi cirikhas gejala DBD.

4.2. Saran

Pada penelitian ini digunakan bobot fitur yang seragam pada algoritma VFI5. Hal ini masih bisa dikembangkan dengan menggunakan bobot yang berbeda sentuk setiap fiturnya.

Untuk pengembangan selanjutnya data yang digunakan fharapkan memiliki jumlah record yang lebih banyak. Disarankan juga adanya penambahan kriteria klinis yang relevan termasuk tanda subjektif seperti sakit kepala, nyeri perut dan mual.

DAFTARPUSTAKA

Glvenir HA. 1998. A Classification Learning Algorithm Robust oo Irrelevant Features. http://www. cs.bilkent, edu,tr/tech-repor/19-98/BU-CEIS-9810.pdf.

Gilvenir HA, Demirōz G, Ilter N. 1998. Learning Differential Diagnosis of Enthemato-Squamous Diseases using Voting Feature Intevals. Artificial Intelligence in Medicine, 13(3), 147-165.

Ibrahim F, Taib MN, Abas WABW, Guan CC, Sulaiman S. 2005. A Novel Dengue Fever (DF) and Dengwe Haemorrhagic Fever (DHF) Analysis Using Artificial Newral $\begin{array}{lllllll}N & e & t & w & o & r & k\end{array}$ (ANN).http://www.intleslsevierheal.co mjicurnals/cmpb.

Iqbal M. 2007. Klasifikasi Pasien Suspect Parvo dan Distemper pada Data Rekam Medik Rumah Sakit Hewan IPB Menggunakan Voting Feature Intevals [skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.

Kristina, Isminah dan Wulandari L. 2004. Demam Berdarah Dengue. http:// www.litbang.depkes.go.id/maskess 0520 04/demamberdarah1.htm.

Syafii M. 2006. Adaptive Neuro Fuzzy Inference System (ANFIS) untuk Diagnosa dan Tatalaksana Penyakit Demam Berdarah Dengue [tesis]. Bogor. Sekolah Pascasarjana, Intitut Pertanian Bogor. 14

